THREE NEW SPECIES OF CHIRONOMIDAE (DIPTERA) FROM THE AUSTRALIAN WET TROPICS

P.S. CRANSTON

Cranston, P.S. 20001231 : Three new species of Chironomidae (Diptera) from the Australian Wet Tropics. Memoirs of the Queensland Muserm 46(1): 107-127. Brisbane. ISSN 0079-8835.

Two new genera and three new species of Chironomidae are described from Australia in all life history stages: in the subfamily Orthocladiinae: Echinocladius gen. nov., type species E. martini sp. nov.; in the Tanypodinae: Austrolopelopia gen. nov, type species A. prionoptera sp. nov. and in the Chironominae: Polypedilum australotropicus sp. nov. All species occur in streams of the Wet Tropics, where they are the subject of ongoing ecophysiological study. E. martini and A. prionoptera have a wide distribution in cool, shaded eastern submontane streams, inferred to reflect a Gondwanan-type distribution. In the case of Echinocladius this is supported by a postulated phylogenetic sister-group relationship to Pirara Boothroyd \& Cranston, already known from Australia and New Zealand, and now with a third species decribed here, Pirara cdwardi sp. nov., from Patagonian Argentina. The erection of a new genus of pentaneurine Tanypodinae, Australopelopia, also is justified by phylogenetic reasoning, with a sister group relationship to a more widely defined Thienemannimyia-group of genera postulated. Polypedilum australotropicus is differentiated from Australian congeners, with a new larval feature, a hyaline area postulated to be the clypeal section of the frontoclypeus, figured and discussed. \square Chironomidae, Orthocladimae, Tanypodinoe, Chironominae, Iropics, Anstralia, Argentina.
P.S. Cronston. CSIRO Entomology, Box 1700, ACT 2601. Austrulia. Present address: Department of Entomology, Uuiversity of California, One Shields Aveme, Davis, Californio, USA, 95616 (e-mail: pscrunston(ancdonis.edu): received 10 Jamuary 2000.

The Australian ehironomid (Diptera: Chironomidae) fauna is well enough known on a continental scale (Cranston. 1996, 2000) to allow some understanding of ecological and biogeographic relationships. We can recognise taxa: i) related to those in other cool areas of the southern continents; ii) related to those in warmer gondwanan areas; or iii) non-gondwanan, ineluding anthropogenie, elements derived more recently from the north. Assessing the correctness of previous taxonomic placements depends upon a global perspective, and increasingly upon the availability of all life history stages to allow appropriate phylogenetically-based ecological and biogeographic understanding. Still, however, detailed study of the biota of a poorly-studied part of the Australian continent reveals undescribed, unalloeated or misallocated taxa, and the Wet Tropics of North Queensland is no exception (Cranston, 1999, 2000). Some of these chironomid tava are the subject of cvolutionary-based research, for example in ongoing studies of the eco-physiological responses of ecologically and biogeographically-eontrasting lotic chironomid taxa (Brendan McKie, in prep.). Three of the taxa involved represent different subfamilies, biogeographic origins, funetional feeding groups
and physiologieal responses. This contribution provides formal names and descriptions for taxa for which codes have been used previously. Phylogenetic cstimates made in support of decisions are based on on-going data matrix constructions available from the author on eleetronic request.

METHODS

Specimens werc colleeted from streams by individual larval eollection, or from drift using a modified Surber sampler with mesh size of approximately $300 \mu \mathrm{~m}$, for an exposure pcriod that minimally included the night hours (18.00-6.00h). Sorting was done in the field immediately after net recovery using a binocular microscope and natural light where possible. Individual larval rearings were made in native water, held at ambient tempcrature, in separate vials stoppered with cotton wool. Specimens were prepared with at least the genitalia of pharate adults dissected out and mounted in Euparal, or some whole larvae in lloyer's mountant. Terminology follows Sæther (1980) cxcept for use of taenia (taeniate) for broadened thin setae (Langton, 1994). Mensural features are counts, or lengths in $\mu \mathrm{m}$ unless stated. Localities are

FIG. 1. A-C, Echinocladius martini sp. nov., ©; A, antennal apex; B, wing; C, © genitalia, left side dorsal, right side semi-internal. D-F, Pirara echwardi sp. nov., ©; D, antennal apex; E, ô genitalia, left side dorsal, right side semi-internal; F. gonostylus, isolated, left, mesal.
arranged from N to S : either GPS-derived degrecs, minutes and seeonds ($\mathrm{xx}^{\circ} \mathrm{xx} \mathrm{xx}^{\prime \prime}$) or decimal minutes (xx.x') are cited. Elevations, where eited, are map-derived. Unless stated otherwise, the collector is the author, and specimens are deposited in the Australian National Inseet Collection (ANIC), Canberra. Spccimens are entered into the \triangle NIC database. Abbreviations: AR, antennal ratio (terminal flagellomere [or 2 in Tanypodinae]: remainder of flagellum); L(e), larva (exuviae); LR, leg ratio (tarsomerel: tibia); NP, National Park; P(e). pupa (exuviae); SF, State Forest.

SYSTEMATICS

ORTHOCLADIINAE

Echinocladius gen. nov.
(Figs 1-4)
Orthocladinae 'MO5' Cranston, 1996, 2000; Mckic \& Cranston, 1998.

TYPE SPECIES. Echinocladius matrini, sp. nov.
ETYMOLOGY. Echino, Latin for thickly set wilh spines, as is the pupa, and cladius, Latin for a diminutive branch (clade).

DIAGNOSIS. Adult with kidney-shaped eye, thorax with well-developed antepronotum, lacking acrostichals, wing with R_{2+3} eompressed between R_{1} and R_{++5}, tarsi with pulvilli, hypopygium with short bare anal point, with inferior volsella. Pupa lacks Irontal setae, has mutiplied dorsocentral setae, carries dense fine spines on tergites and sternites, and the short anal lobe has macrosetae comprising 3 stout short spines. Larva purple in life, having large dilate Lauterborn organs, a 6 -segmented antenna, simple, broadly laneeolate S1 seta; pecten epipharyngis with 3 unfused rounded scales: mandible apical tooth shorter than eombined width of 4 inner teeth; mentum with simple, broad median tooth with median nipple and 5 pairs of evenly decreasing lateral teeth.
DESCRIPTION. MALE. Small, length up to 2.1 mm ; wing length to 1.2 mm . Antenna with 13 cylindrical flagellomeres, well-developed plume extending to apex laeking strong subapieal seta (Fig. 1A); groove extending from flagellomere 4 to 13: sensilla chactica on flagellomeres 2-5 and sub-apex of 13. AR c.0.5. Head with kidneyshaped bare eyc without dorsomedial cxtension. Temporal setation restricted to few linear postorbitals. Tentorium tapering apieally, strongly dilated in basal seetion, with distinct sieve plate,
cibarial pump rectangular with short cornua. Clypeus densely setose. Palps with 5 segments, 2nd longer than subequal 3-4, 5th longer; 3rd without sensilla chaetica.
Thorax uniform medium brown. Antepronotum well developed, lobes not medially narrowed, narrowly in medial eontact. Thoracic setation: 0-2 antepronotals, acrostichals absent, few dorsocentrals and prealars; few uniserial scutellars. Pleurae bare.
Wing (Fig. 1B) membrane with fine punctation, without macrotriehia. R_{1} running close to R_{4+5} with R_{2+3} visible but compressed between. ending close to apex of R_{4+5} above M_{3+4}; costa extended. Brachiolum with 1 seta, R with few setae, remaining veins without setae, Squama with few setae. Anal lobe moderately produced. FCu far distal to $\mathrm{r}-\mathrm{m}, \mathrm{Cu}_{1}$ curved, with slightly recurved apex, strong to wing margin.
Legs with fore tibial spur shorter than tibial apex, median tibia with two short, subequal spurs: hind tibia with one long spur subequal to tibial apex, the other short; mid- and lind spurs weakly dentieulate; comb disorganised; pseudospurs absent. Sensilla chaetica tipparently absent. Pulvilli well developed, at least half claw length, elaws apieally slightly pectinate.

Abdomen with unieolorous tergites, with few, long, setae concentrated in anterior half of tergite; tergite 1 X with few apical setae. Anal point narrow, bare, placed posteriorly on tcrgite and projecting beyond apex of tergite. Sternapodeme an inverted U-shape, with weak to strong anterotateral projections; phallapodeme well developed. Hypopygium (Fig. 1C) laeking superior volsella; inferior volsella elongate-triangular, with rounded posterior lobe. Gonostylus simple, with megaseta and small crista dorsalis. Virga absent.

FEMALE. As for male, except body length $1.9-2.6 \mathrm{~mm}$, wing length $1.1-1.4 \mathrm{~mm}$, Antenna (Fig. 2A) with 5 flagellomeres; AR 0.44-0.64. 1 lead with 2-3 outer vertical/postorbitals. Wing (Fig. 2B) with R, R_{2+3} and R_{4+5} darkened, closely appressed although veins distinet, with R_{4+5} eontinuing distinctly into costal extension; $\mathrm{R}, \mathrm{R}_{1}$ and R_{4+5} setose; venarum ratio 1.32-1.43; squama with $7-9$ setae. Claws simple. Genitalia (Fig. 2C, D) with tergite IX small, weakly emarginate medially, with single row of posterior setae or some signs of aggregation into two clusters; gonocoxite 1X wcakly bulging, with many long and short setae; gonapophysis V1ll divided, large ventrolateral lobe overlying posterior part of

FIC.2. Echinocladius martini sp. nov., f; A, antenna; B, wing; C, genitalia. ventral: D. i genitalia, dorsal.
strong dorsomesal apodeme lobe dark, quite large, weakly curved to interrupted medially; notum moderately lengthed, extending no firther anterior than posterior seminal capsules; 2 seminal capsules pale, ovoid to pear-shaped. without microtrichia, with well developed neck; spermathecal ducts curved with pronounced bulbs before separate openings; labia simple and weakly sclerotised. Tergite X and cerci small. postenental plate triangular.
PUPA. Small. 3-4mm. Enuviae uniformly greybrown. Cephalothorax: frontal setae absent but possibly represented by paired scars on frons. Frontal apolome smooth. Ocular tield with one vertical and one postorbital seta. Thorax with 2
median and one lateral antepronotals. 3 subequal precomeals; with numerous thoracic setae not readily allocated to conventional groups (Fig. 3A). Thoracic horn absent. Dorsum of thorax variably rugulose. Prcalar area rounded, with c. 10 setuc. Wing sheath smooth.
Abdomen without pedes spurii A and B. Tergites (Fig. 3B,C): predominantly without shagreen (may be faint on II) II without hook row, II-V111 with posterior transverse spine band with some medial spinus pale and very elongate, IX with median patch of long dark spines. Conjuntives II-IV widt long translucent anteriorlydirected slender spines, often very dense, medially divided on IV. Sternites (Fig. 3C) with
or without fine shagreen, when present, notable on posterior segments; 11 with cluster of long translucent spines medially. Conjunctives $111-\mathrm{V}$ with dense long translucent anteriorly directed line spines. Anal lobe small, squared-off, with antero-median patch, of long and short spines, with 3 subequal short, stout maerosetae (Fig. 3D), much shorter than anal lobe. Male genital sac extends posteriorly beyond anal lobe; that of female much shorter. Setation: generally 5 D, 4 L and $6-8 \mathrm{~V}$ setae.

LARVA. Fourth-instar larva medium-sized, up to 5.8 mm tong. Dorsal surface of head with single frontoclypeal sclcrite, partially fragmentary posteriorly, smooth anteriorly. Antenna (Fig. 4A) 6 -segmented, with 3 rd subequal to 2 nd, 4 th and 5 th short, 6th minute. AR c 1. Ring organ at base of segment 1 ; antennal blade simple, extending to sub-apex. Lauterborn organs well developed, dilate, subequal in length to segment 3 , style half length of 3rd segment. Labrum (Fig. 4B) with S1 simple, broadly lanceolate, SII tong, stender, SIII and IVa,b simple and short, one chacta lanceolate, remainder simple; spinulae strong. Premandible with one apical and one small but broad inncr tooth, with weak premandibular brush. Pecten epipharyngis of 3 unfused rounded scales, the median one apparently either scrrate, or notehed, or both. Ungula short and squat with few short and simple and pectinate chaetae. Mandible (Fig. 4D) with outer and inner margins smooth, apical tooth shorter than combined width of 4 inner teeth. Seta subdentalis present, more or less rounded. Seta interna with 2 simple branches. Mentum (Fig. 4C) with median tooth simple and broad with median nipple; 5 pairs of lateral teeth decreasing on even slope. Ventromental plate narrow, basally overlying butbous to ledgeshaped projection ventral to outermost mental teeth and extending nearly to outermost mental tooth (extent depends on degree of compression); beard absent. Maxilla (Fig. 4E) with squat palpiger, few gatear lamellae, without pecten galearis, with one large triangular lacinial chaeta. Body with no evidence of lateral setae. Anterion parapods separate, with crown of elongate, simple, spines and small pectinate elaws. Posterior parapods separate, with apical group of simple claws. Procercus as wide as high, dark pigmented posteriorly bearing 3 (perhaps 4) shortish anal setac. Anal tubules searcely developed.
DISTRIBUTION. Monotypic, Australian/ Tasmanian endemic, distributed atong the castern
sub-coastal continental margin from $17^{\circ} \mathrm{S}$ to $42^{\circ} \mathrm{S}$.

REMARKS. In Freeman (1961), mates of Echinocladius key to Kiefferophyes Frceman based on the bare eye, nuter tibial spur short relative to inner, non-macrotrichiose, linely punctate wing membrane, fringed squama and wing vein R_{2+3} distinct though ending close to apex of R_{4+5}. Comparison with Kiefferophyes shows there is a superficial resemblance, but the genitalia differ especially in significant features in Echinocladins such as the lack of a strong virga, lack of any indication of a gonostylar extension and prescnce of simple, bare anal point. Freeman's (1961) coverage of the Australian Orthocladiinae is incomplete, and several taxa of 'small, black midges' are excluded. In the key to Holarctic adult Orthocladiinac (Wiederholm, 1989) Echinocladins belongs to a group with bare wings and eyes, fringed squama, small pulvilli and lacking acrostichals, amongst which it keys to Psitometriocnemus Sæuther (at least to the species trianmulatus Sxther) if the anal point is considered parallel-sided, or Tveteria Kiefler if it is considered to taper.
The female of Echinocladins keys readily to Parorthocladius in Sæther (1977) who suggests that Kiefferophyes might run to this couplet. Although the female genitalia of Kiefferophes remains undescribed, Sether's deduction undoubtedly was correct, as was his speculation that the female genitalia might appear "more similar to Limnophyes". The resemblance of Echinocladins to Kiefferophyes, whose immature stages remain unknown and are therefore likely to be terrestrial, is discussed above.

Pupae of Echinocladius lack frontal setae and thoracic horns and always have many prealars and multiple thoracic sctae. have dense abdominat armament including long needle-like or triangular spines on posterior of most tergites inchuding IX, sternal conjunctives ill-V with elongate pate needle-like spines, fine L-setae, and anal lobe rounded/truncated with 3 short macrosetae and without fringe. Echinochalins pupae key in Wiederholm (1986) to Limmophyes Eaton or Paralimnophyes Brundin, based on the distinetive presence of very clongate ("needlelike') spines on the tergites. However, this feature actually has a wider distribution amongst exuviae of presumptive Gondwanan orthoclad taxa, inchuding Borroolladius Cranston \& Edward, 1999, Pirara Boothroyd \& Cranston. 1995 and some Austratian taxa known thus far by codes,

FIG. 3. A-D, Echinocladius martini sp. nov., pupa; A. thorax lateral: B, tergites, dorsal; C, abdomen, lateral; D, anal lobe setae. E, Pirura edwardisp. nov., tergites, dorsal.
namely 'SO2' and 'SO3' (Cranston, 1996). That Echinocladius is neither a Limnophyes nor a Paralimnophyes can be inferred on pupal features from the very short and spine-like anal
lohe macrosetae (in contrast to the conventional anal lobe setal length), the distinctive distribution of the needle-like setae especially on tergite IX and sternites, and the multiplicity of thoracic
setae. These features, and lack of a thoracic hom eliminates both Botryocladius and 'SO2' from consideration. The taxon ' SO 3 ' has conventional thoracic setation, lacks a thoracic horn, and has less devcloped tergal spines: the most similar pupal taxon is Pirara which shares much similarity of armament, differing predominantly in possessing frontal setae and in the conventional thoracic sctation.

Echinocladius larvae have a 6 -segmented antenna of moderate-length with exeeptionally dilate Lauterborn organs that equal the length of the 3 rd segment, itself subequal to the 2 nd segment; S1 seta simple, as are all other S setae, labral lamellae absent, premandible simple and without beard, mentum with domed single median tooth; ventromental plate bulging but not extending beyond outer margin of mentum without setae beneath; mandible with 4 distinet inner teeth, smooth outer and inner surface and mola, with slender, 2-3 branched seta interna. In Wiederholm (1983) the larva fails to key due to an apparent irreconeilable character conflict, in that all included taxa with a simple S1 seta apparently have reduced procerci. In reality this is misleading since Tokunagaia does possess this combination of features (as does Echinocluclins) but is ineorreetly keyed: nevertheless Tokunagaia probably is not a elose relative since the antenna, mentum and ventromental plate differ markedly. The ventromental plate shape of Echinocladius is reminiscent of Limnoplyes and Paralimnophyes.

In providing an cstimate of phylogenetic relationships for Botryocladius, Cranston \& Edward (1999, table 6) scored a morphological matrix for putative relatives including Echinocladius (as 'MO5') but without Pirara. Parsimonious analysis of that matrix with the addition of Pirara suggests that this genus forms the sister taxon to Ecliunocladius, and this pair are sister to Paralinmophyes either alone or with Synorthocladius (sce Cranston \& Edward, 1999, fig. 11 for tree without Pirara). Revisiting Pirara showed that P. australiensis Boothroyd \& Cranston actually does have a short, hyaline anal point, in contrast to the original description, ligure and key (Boothroyd \& Cranston, 1995). Furthermore, amongst Patagonian (South American) lotic drift net material there oecurs pharate material belonging to this clade, and since this aids in generic delimitation and confirms a cool temperate biogengraphic scenario (Boothroyd \& Cranston, 1995), the
species is described briefly as Pirara echwardi sp. nov. in this contribution.

Echinocladius martini sp. nov.

(Figs 1-4)
ETYMOLOGY. The speeific epithet honours Australian colleague Jon Martin, who first associated the pupa and adult of this tavon by rearing.
MATERIAL. HOLOTYPE, Le/Pe/ð, Australia, $35^{\circ} 22^{\circ} \mathrm{S}$ $148^{\circ} 50^{\circ}$ E, ACT, Blundell's Ck, ix. 1999, ex-wood surface, reared Cranston, in ANIC. PARATYPES. Queensland: P $\delta^{\circ}, 3 \mathrm{Pe}, 17^{\circ} 01^{\circ} \mathrm{S} 145^{\circ} 35^{\circ} \mathrm{E}$, nr Mareeba, Davies Ck above falls, $520 \mathrm{~m}, 11 / 12 . \mathrm{iv} .1997,6 \mathrm{Pe}, 19 / 20 . \mathrm{vi} .1997,7 \mathrm{Pe}$, $27 / 28 . v i i i .1997,4 \mathrm{Pe}, 17 / 18 \times x i 1.1997 ; 14 \mathrm{Pe}, 17^{\circ} 08^{\prime} 06^{\prime \prime} \mathrm{S}$ $145^{\circ} 35^{\circ} 35^{\prime \prime} \mathrm{E}$, Danbulla, Kauri Ck, 17/18.xii.1997; P多, Pe, $17^{\circ} 20^{\prime} \mathrm{S} 145^{\circ} 28^{\prime} \mathrm{E}$, Herberton, Carrington Falls $\mathrm{Ck}, 800 \mathrm{~m}$, 9/10.iv. 1997; L, 6Pe, $17^{\circ} 26^{\circ} 48^{\prime \prime} \mathrm{S} 14^{\circ} 28^{\circ} 28^{\prime \prime} \mathrm{E}$, Nigger Ck, $1100 \mathrm{~m}, 19 . x i i .1997 ;$ 2Pe, $^{1} 8^{\circ} 11.7^{\circ} \mathrm{S} 145^{\circ} 46.0^{\circ} \mathrm{E}$, Yuceabine Ck, 10.vi. 1997 (McKie); 4Pe, 18 ${ }^{\circ} 58.0^{\circ} \mathrm{S}$ $146^{\circ} 09.8^{\circ} \mathrm{E}$, Camp Ck, 12/13.vi. 1998 (McKic); 2Pc, $18^{\circ} 58.7^{\prime} \mathrm{S} 146^{\circ} 09.8^{\prime} \mathrm{E}$, Mary Ck, 9.ix. 1997 (McKie);
 $1000 \mathrm{~m}, 24 \ldots 1998$ (McKie), 26Pe, $18^{\circ} 59^{\prime} \mathrm{S} 146^{\circ} 09^{\circ} \mathrm{E}$, 25/26.iii. 1998; $2 \mathrm{Pe}, 19^{\circ} 01^{\circ} \mathrm{S} 146^{\circ} 13^{\circ} \mathrm{E}$, unnamed Ck S Paluma, $850 \mathrm{~m}, 25 / 26$.iii. 1998 ; Pe, Eungella NP, Mt Dalrymple track, Cattle Ck, 950m, 22.iii. 1998; 4 Pe , $26^{\circ} 03^{\circ} 00^{\prime \prime} \mathrm{S} 153^{\circ} 04^{\prime} 29^{\prime \prime} \mathrm{E}$, Coloola NP, Frankis Gulch, 6.iv. 1996. NSW: $2 \mathrm{Pe}, 30^{\circ} 16^{\prime} \mathrm{S} 152^{\circ} 50^{\circ} \mathrm{E}$, nr Dorrigo, Eve Ck. 9.x.1996: Pe. $31^{\circ} 54^{\prime} \mathrm{S} 151^{\circ} 34^{\prime} \mathrm{E}$, Barrington $\mathrm{T}^{\circ} \mathrm{ops}$, Dilgry R.,14.iv. $1990 ; 2 \mathrm{Pe}, 34^{\circ} 40^{\prime} \mathrm{S} 150^{\circ} 44^{\circ} \mathrm{E}$, Barren Grounds N.R., Redback Stream, 9.iv.1994: 8Pe, $35^{\circ} 16^{\circ} \mathrm{S}$ $150^{\circ} 03^{\circ} \mathrm{E}$, Morton NP, Wog Wog Ck, 25.iv.1994; Pe, $35^{\circ} 24^{\prime} \mathrm{S} 149^{\circ} 57^{\circ} \mathrm{E}$, Mongarlowe R., 7.iii. 1992, Le/Pe/ठ゙. 15.iii.1992, $3 \mathrm{Pe}, 17 . \mathrm{iii} .1992 ; \mathrm{Pe}, 35^{\circ} 23^{\prime} \mathrm{S}$ 149 ${ }^{\circ} 55^{\circ} \mathrm{E}$, Monga SF, Mongarlowe R., 2.ii.1991; Le/Pe/ㅇ, $35^{\circ} 26^{\circ} \mathrm{S}$ $150^{\circ} 12^{\prime} \mathrm{E}$, Bimberamala $\mathrm{Ck}, 28 . \mathrm{ix} .1996 ; \mathrm{Le} / \mathrm{Pe} / \delta$, Le/Pe/g, $35^{\circ} 31^{\circ} \mathrm{S} 150^{\circ} 03^{\prime} \mathrm{E}$, Cly de SF, Carter Ck,1496: $2 \mathrm{~L}, 6 \mathrm{Pe}, 35^{\circ} 34^{\prime} \mathrm{S} 150^{\circ} 02^{\circ} \mathrm{E}$, Currowan SF, Cabbage ' ree Ck, 30.iii. 1994; Pe, $35^{\circ} 33^{\prime} \mathrm{S} 149^{\circ} 58^{\prime} \mathrm{E}$, Clyde Mt., Sugarloaf Ck, 20.xii.1987, Pe/ठ, Pe, 10.i.1988; Le/Pe/q. $35^{\circ} 35^{\prime} \mathrm{S} 150^{\circ} 05^{\circ} \mathrm{E}$, Paddy's R., 16x.1993; PG, $35^{\circ} 35^{\prime} \mathrm{S}$ $149^{\circ} 28^{\prime}$ E, Captains Flat. Molonglo R., 30 i. 1988 (Atkins); $\mathrm{Pe}, 35^{\circ} 45^{\prime} \mathrm{S} 149^{\circ} 57^{\prime} \mathrm{E}$, SE Araluen, Deua R., 19.xii.1990; $\mathrm{Pe}, 37^{\circ} 16^{\prime} \mathrm{S} 149^{\circ} 40^{\circ} \mathrm{E}, \mathrm{Mt}$ Imlay, Imlay Ck, 13.i.1994. ACT: Brindabellas. PG, $35^{\circ} 20^{\prime}$ S $148^{\circ} 56^{\prime}$ E. Pierce's Ck. 23.i.1996. ex-wood (McKic); LePP, PE, $35^{\circ} 22^{\circ} \mathrm{S} 148^{\circ} 50^{\prime} \mathrm{E}$, Pe, Blundell's Ch, 26.iii. 1988. 2Pe, 8/9.iv.1988, Le/Pe/?, 13-16.iv.1988, Pe, 3.viii.1998, Pe, 24.i. 1998 (Willis); Pe, $35^{\circ} 20^{\prime} \mathrm{S} 148^{\circ} 56^{\circ} \mathrm{E}$, Lees $\mathrm{Ck}, 21$.v. 1998 , Pe, 12/13.i. 1998 (Willis \& Cranston), Pe, 24.i. 1998 (Willis), Pe,
 Moonlight Hollow, 20.x.1991; Pe, $35^{\circ} 27^{\prime} \mathrm{S} 148^{\circ} 57^{\circ}{ }^{\circ}$, Tidbinbilla Ck, 19.ii.1989; Pe, $35^{\circ} 39^{\circ} \mathrm{S}$ 148 $8^{\circ} 598^{\circ} \mathrm{E}$. Namadgi NP, Orrotal R., 21.ii.1988; L(P), $35^{\circ} 41^{\prime} \mathrm{S}$ $149^{\circ} 00^{\prime} \mathrm{E}$. Gudgenby R. 14.ii.1988. VIC: Pe. $36^{\circ} 33^{\prime} \mathrm{S}$ $147^{\circ} 3^{\prime}$ 'E. Mitta Mitta, Snowy Ck, 10.ix. 1990 (Cook); Pe, $37^{\circ} 14.5 \mathrm{~S} 148^{\circ} 45.5^{\prime} \mathrm{E}$. East Gippsland, jct Bonang Hwy/gap Rd, Bonang R., 15.ii.1992; Pelo, $37^{\circ} 28^{\circ} \mathrm{S}$ $145^{\circ} 45^{\prime}$ E. Steavenson R., 7.iv. 1993 (Downes). TAS: Pe/ठ, Lake St Clair, at entrance of Narcissus R., 9.x. 1972

FIG. 4. Echinocludius murtimi sp. nov., larva; A, antenna; B, labrum; C, mentum; D, mandible; t, maxilla.
(Martin): L, Pe, $42^{\circ} 38.5^{\circ} \mathrm{S} 146^{\circ} 34^{\circ} \mathrm{E}$, Mt Field NP. Twilight Tarn, $1000 \mathrm{~m}, 7 . i i .1992$: $2 \mathrm{Pe}, 42^{\circ} 40.5^{\prime} \mathrm{S} 146^{\circ} 37.5^{\circ} \mathrm{E}$, Lake Fenton, $1006 \mathrm{~m}, 6.1 i .1992 ; 2 \mathrm{Pe}, 42^{\circ} 40^{\circ} \mathrm{S} 146^{\circ} 35^{\circ} \mathrm{E}$, Lake Seal, 900 m . 7.ii. 1992 ; $2 \mathrm{P}^{\prime} \mathrm{e}, 42^{\circ} 40.5^{\circ} \mathrm{S} 146^{\circ} 37.5^{\circ}$ E, Lake Newdegate, 1140m, 6.ii.1992.

DESCRIPTION. MALE. ($n=3$) Thorax, legs and abdomen brown-black. Body length 1.6-2. 1 mm . wing length $1.0-1.3 \mathrm{~mm}$. Antennal segments $1-12$: 375-430, 13: 215-320, AR 0.55-0.76. Head with 2 strong outer verticals and 1 postorbital, 10-13
clypeals. Palp 2-5, 20-30, 45-65, 60-80, 100-130. Thoracic setation: 1 lateral antepronotal; 0 acrostichals; 6-10 dorsocentrals, 3-4 prcalars: 0 supraalars; 3-8 biserial scutellars. Wing setation: Sq 7-10, R 1-4; V.R. 1.32-1.43. LR 1 0.54-0.57, LR_{2} 0.39-0.44, LR_{3} 0.48-0.51. Hypopygium, as in Fig. 1C, gonocoxite 80-160, gonostylus 55-101.

FEMALE. ($\mathrm{n}=2$) Body length $1.6-1.9 \mathrm{~mm}$, wing length $1.2-1.4 \mathrm{~mm}$. Antennal segments $45,28.35$, 32, 60; AR 0.42-0.56. Head setation: 0 frontal, 2-3 strong postorbitals, 15 clypcals. Thoracic setation: 0-1 latcral antepronotal; 0 acrostichals; 7-9 dorsocentrals, 3 prealars: 0 supraalars; $7-8$ biserial scutellars. Wing setation: Sq 6-9, R 6-8, R_{1} 6-8, R R_{4+5} 18-20; V.R. 1.5. LR 1 0.59, LR 2 $0.39-0.42, \mathrm{LR}_{3} 0.46-0.49$. Seminal capsules 60 $\times 56$, ovoid, with short neck.

PUPA. $(\mathrm{n}=10)$ Length 2.2-2.9mm, cephalothorax $800-820 \mathrm{~mm}$. Frons without frontal setae. Thorax as Fig. 3A, abdomen as in Fig. 3B,C. Anal macrosetae 20-25 long (Fig. 3D).

LARVA. ($\mathrm{n}=10$) Length 3.2-3.5mm, thoracic segments green, abdomen pale bluc anteriorly tending to violet posteriorly. Head capsule length 260-315, pale, with occipital margin slightly darkcr, lateral mental teeth and inner mandibular teeth golden brown. Antennal segment lengths: 27-42, 9-12, 9-12, 3-4, 3-4, 2; AR 1.06-1.45. Blade 20-30, style 8-10, Lauterborn organ 9-11. Mentum width 49-75, median tooth 9-10. Mandible 77-107. Procercus 17-22 \times 12-14, bearing 4 anal setae of maximum Icngth 130-145.

DISTRIBUTION, ECOLOGY AND BIOGEOGRAPHY. Echinocladius ulartini is quite abundant in flowing waters, predominantly where shaded from elevated temperatures, from north Queensland, to southeast Australia and Tasmania, especially at middle to high elevations. In southeast Australian subalpine streams larval E. martini (as 'MO5') wcre amongst the most abundant chironomids living as gatherers on immersed wood in streams with riparian native vegetation, with abundances little reduced in streams with riparian pine plantation, but almost absent from otherwise comparable unshaded grassland streams (McKie \& Cranston, 1998). In Birthday Creek at 1000 m above sea level in the southern Wet Tropics, E. martini larvae are abundant at the water/surface interface, where they form translucent silken tubes, which are also used for pupation (B. McKie pers. comm.).

As with several other cool stenothermic Orthocladiinae, this predominantly lotic species occurs in standing waters at high elevations in Tasmania, whore lower tomperatures and aerating effects of wave action probably ensure favourable conditions.
As assessed by interception of floating pupal exuviac., E. martini adults cmerged only in late summer/early autumn in a southeastern subalpine stream (Willis, 1998). Dates from serendipitous 24 hr drift net collections suggest that this seasonality is widespread in temperate areas, whercas in tropical Queensland exuvial collections supplemented with observations by McKie suggest essentially continuous emergence.
The evident sister group relationship to Piraro, and relationship to Paralimnopliyes, Botryocladius and 'SO2' and 'SO3', a clade with strong gondwanan connections, suggests that Echinocladius also belongs in this biogeographic grouping. Not only docs the phylogeny suggest this historical relationship, but the modern day distribution and ecology of the clade also carries the same inference. Taxa with phylogenetic relationships to New Zealand and Patagonian South America, as with Echinocladius, all share the same cool stenothermic physiology, and distribution along the eastern coast of Australia in shaded (and therefore cool and well oxygenated) streams. The same applies to Australopelopia (sec below).

Pirara edwardi sp. nov.

(Figs 1D-F, 3E)
ETYMOLOGY. For D.H.D. (Don) Edward, recently retired chironomidologist of Western Australia, accompanist of the author to Patagonia in 1997, in acknowledgment of his companionship in field and laboratory.
 Martin, Arroyo Partida, 21.i. 1997, P.S. Cranston, in Nuseo de la Plata, Argentina. Holotype and paratypes, P ㅎ, P O. same locality, both mounted on one slide.
DESCRIPTION. MALE. ($\mathrm{n}=2$, pharate) Thorax, legs and abdomen brown-black. Mensural features. Body about 2 mm , wing length unmeasurable. Antenna (Fig. 1D) with segments 1-12: 445-450, 13: 77-82, AR 0.17-0.18. Head setation: 0 frontal, 3 strong postorbitals, 6-8 clypeals. Thoracic setation: 0-1 lateral antepronotal: 0 acrostichals; 5-6 dorsocentrals, 3 prealars: 0 supraalars; 4-5 biserial scutellars. Wing setation: Sq 8, remainder unmeasurable. LR uncalculable. Hypopygium (Fig. IE) with densely
microtrichiose tergite 1 X , with only 2 modest setae, apparently without anal point (although if short and hyaline, the anal point may bc present and hidden in a crease in tergite IX of the teneral specimens, as with P. cuustraliensis, above).

Gonocoxite 125-132 with no indication of superior volsella, inferior volsella with hyalinc rounded-triangular apex, gonostylus (Fig. IF) 50-53. without crista dorsalis. Virga weakly indicated, phallapodeme short, sternapodeme very thin. Gonocoxite dorsally with 6 long setae aligned along median border, overlapping with those of the opposite gonocoxite.

FEMALE. undescribable from early pharatc pupa.
PUPA. ($\mathrm{n}=3$) About 2 mm long, essentally indistinguishable from the two described species of Pirara from Australia and New Zealand, and separable from Echinocladius by the 4 dorsocentral setae, and sparser tergal spinosity, including the presence of a broad gap in the median area of tergite 111 (Fig. 3E).
LARVA. Unknown, but predicted by its congenericity in other stages, to possess the autapomorphies of Pirara, notable the plumose submental, external mandibular and maxillary setae.

REMARKS. From re-examination of the described species of Pirara, and the material of P. edwardi above, the following features distinguish between the two genera:

The adult male of Echinoclactins has well developed pulvilli, whereas Pirctra has no trace; the wing of Echinocladiuss has R_{2+3} distinct between R_{1} and R_{4+5} although they are approximated for all their length, obviously so in the female wing, whereas, although R_{1} and R_{4+5} are well separated in Pirara, R_{2+3} is indistinguishable; Echinoclaclius has no virga, but a weak to moderately-developed virga is seen in Pirara; the claws of Pirara are toothed apically, at least P. anstraliensis, simple in Echinocladins.

In the pupa, Echinocladins lacks frontal sctae, but they are fine and small in Pirara; the dorsocentral setae are highly duplicated in Echinoclaclins, with the conventional number and placement in Pirara.

In the larva, although the large Lauterborn organ is shared, the antemna of Pirara is 5 segmented and short, but 6 -segmented and of more normal length in Echinocladius; the median mentum comprises a domed tooth in Echinocladius, double in Pirara; the mandible of

Echinocladins has 3 inner teeth, compared to the 4 of Pirara; Echinocladins lacks the prominent plumose cephalic sctac of Pirara, and labral S1 seta is simple in Echinocladius but bifid in Pirara.

TANYPODINAE

Australopelopia gen. nov.

(Figs 5-6)
Pentanetras. sp. Cranston 1996, 2000.
TYPE SPECIES. Austrulopelopia prionoptera sp. nov.
ETYMOLOGY. Australo, for the so-far endemic distribution in Australia, and pelopia, a frequently used suffix in Tanypodinae, based on the suppressed Meigen 1800 genus name Pelopia.
DIAGNOSIS. Adult with thoracic tubercle, scapc and pedicel setose, costa spinose in G, extending beyond apex of R_{++5} to near wing apex; R_{2+3}, R_{2} and R_{3} present; tibial spurs 1, 2, 2, elongate with several side teeth; hypopygium with evidence of volsella on median base of gonocoxite. Pupa with dilate tubular thoracic horn, with horn sac filling half lumen, with subapical connection to large ovoid plastron plate, filling much of corona; thoracic comb present; tergal scar present; shagreen of simple spinules, some aligned in rows; L(ateral) setae taeniate on VII and VIII, anal lobe outer marrgin spinosc, inner bare, setae adhesive. Larva without swim hairs on body, head index c. 0.7; ligula 5 -toothed with concave tooth row and inner teeth curved outward; 2nd antennal segment annulate, $\Lambda R<4$; Mandible with long seta subdentalis arising in indentation between projecting inner and basal teeth; SSm. V9 and V10 aligned at 45° to antero-ventral axis, with VP posterior to V10, dorsal pit present, S7 close to S8.

DISTRIBUTION. Monotypic, Australian/ Tasmanian endemic, distributed along the eastern margin, from $17^{\circ} \mathrm{S}$ to $41^{\circ} \mathrm{S}$, and in extreme southwestern Western Australia.
REMARKS. All stages of Allstralopelopia conform to diagnoses of the tribe Pentaneurini. but each differs in generic identity according to respective stage keyed. The key to larval Pentaneurini of the Holarctic region in Wiederholm (1983) is subjective in somc features (e.g. 'low' vs 'medium-sized' mandibular basal teeth, 'weakly' vs 'strongly' concave ligula) leading to some ambiguity in interpretation. For example, Australopelopia runs to couplet 26 in which the
only mutually exelusive feature requires assessment of the relative size - "large' vs 'without large' - of the basal mandibular tooth. There is even uncertainty about whether the structure in question is indeed a basal tooth, or just an extension of the mola around the site of insertion of the seta interna. However, accepting that the basal tooth is large, then the outwardly eurved inner teeth of the ligula and simple parapod claws lead to Pentaneura Philippi or Telopelopia Roback. It resembles the latter more in having shorter anal tubules and procerci, non-linear, coarsely granulate pseudoradula, but differing in the shape of the muscle attachment area. Alternatively, if it is considered to be without a large basal mandibular tooth. then subsequently an irreconcilable combination of features is encountered - although the ring organ of the palp lies in the middle third (admittedly at the anterior end), the pseudoradula does not link to any selerotised area, and the pecten hypopharyngis teeth are homogeneous in size, precluding identity with Trissopelopia or Hudsoninnyia. The alternative couplet would lead to some Thienemamimyicl-series genera, none of which have as strongly developed inner/basal mandibular teeth as the taxon under consideration.
The aforementioned key does not take into account the taxonomically valuable feature of the relative positions of the cephalic setae and sensory pores whose intra-generic invariance and inter-generic diagnostic value was recognised by Kowalyk (1985). Notable amongst these are the ventral cephalic setae $\mathrm{S} 9, \mathrm{~S} 10$, Seta submenti (SSm) and the ventral pit (VP) which alone can distinguish amongst Australian taxa of Pentaneurini (Cranston, 1996). Following Kowalyk's key for Pentaneurini possessing simple basal palp segment and concave ligula (couplct 14 onward), the approximation of S7 and S8, and presence of a dorsal pit leads to Telopelopia and the Thienemannimyic-series. The alignment of S10, antero-lateral to S9, essentially precludes Pentaneura from consideration (Pentaneura sp., Kowalyk 1985, figs 140, 141; Pentaneura incouspicura, P.? cinerea Cranston pers. obs.).
The pupa, lacking stellate or indeed any branched spinules in the abdominal shagreen, keys in Wiederholm (1986) beyond the Thienemannimyia-series. The possession of adhesive anal lobe setae and a thoracic comb directs towards Trissopelopia Kieffer or Paramerina Fittkat, but matches ncither preciscly.

Major problems concern reconciling the shagreen pattern (of Trissopelopia type), with the spinosity of the anal lobe (of Paranerina-type).
The male adult keys in Wiederholm (1989) beyond the Thienemamimyia-series if the hypopygium is considcred to lack a volsella, and to Telmatopelopia Fittkau if the costa ending is considered close to above M_{1+2}. The female keys in Sæuther (1977) to Conchapelopia based on the microtrichiose labia and curved coxosternapodeme, but lacks the setae on gonotergite IX. If the coxosternapodeme is considered straight, then Thienemaminuyia and perhaps other related genera enter consideration.
From the above it appears that each life history stage keys to a different grouping, although there is a recurring link to the Thienemannimyia-series of genera, comprising some 8 poorlydifferentiated. generic-ranked taxa. The keys did not purport to follow phylogenetic lines. and indeed the only suggestions of Tanypodinae phylogeny are some tentative remarks by Saether (1977), and thus the only answer to this dilemma is to attempt a phylogeny of the relevant groupings. Thus a matrix of 32 characters scored for 23 taxa has been compiled and analysed under parsimony, Character sclection includes all phylogenetically informative characters noted in the section above, plus those cited by Murray (1995) in consideration of placement of a somewhat anomalous Conchapelopia species, together with some from female genitalia (Secther, 1977) and some from Kowalyk's (1984) study of head capsule setation and pits. This ongoing study, which is preliminary and is not presented in detail here, consistently supports the broadest recognised Thienemannimyia group (Sæther, 1977), with a sister group relationship to Ablabesmyia. Perhaps not unexpectedly given the discussion ahove, it is proposed that Anstralopelopia is sister to the Thienemanninvia group. a placeinent that is independent of outgroup used: namely either or all of Coelopelopia (Coelopynini), Natarsia (Natarsini) or Apsectrotanypus. (Macropelopini). The previous identification of this taxon as a species of Pentaneura (Cranston, 1996) is rejected on this evidence. The proposed phylogeny suggests that the weak expanded area medio-basally on the gonocoxite might be considered to be a precursor of the well developed volsellae that essentially delines the enlarged Thienemaniminv-clade, that is, including Telopelopia, and with Ablabesmyia as sister to this group.

The following description includes features of taxonomic significance at generic level. Until further speeies are collected, the species description of Australopelopia prionoptera summarises features of the new monotypic genus.

Australopelopia prionoptera sp. nov.

 (Figs 5.6)ETYMOLOGY. Prion, Greek for saw, and pteron, Greek for wing, in reference to the saw-toothed anterior wing margin of the adult male.

MATERLAL. HOLOTYPE. Le/Pe/ ${ }^{\circ}$, $18^{\circ} 58^{\prime} \mathrm{S} 146^{\circ} 09^{\circ} \mathrm{E}$, Quecnsland: Paluma, Birthday Ck, 24.x.1998, reared MCKie, in ANIC. Holotype, and paratypes as follows: Qucensland: $2 \mathrm{Pe}, 16^{\circ} 02.7^{\prime \prime} \mathrm{S} 145^{\circ} 27.0^{\prime} \mathrm{E}$, Daintree, Emmagen Ck, 9/10.ix. 1997 (McKie); Pe, $16^{\circ} 05.08^{\circ} \mathrm{S}$ $145^{\circ} 27.36^{\prime} \mathrm{E}$, Mason $\mathrm{Ck}, 23 . \mathrm{iv} .1999 ; \mathrm{P}$ d', $^{\circ} 16^{\circ} 28^{\circ} \mathrm{S}$ $145^{\circ} 19^{\prime} \mathrm{E}$, Mossman. Ist unnamed Ck nr Rex Ck , 5/6.iv.1997, L, $\mathrm{Pe}, 17 / 18 . x i i .1997$, 5L, 19/20.x. 1998 (Cranston \& Dimitriadis), $8 \mathrm{Pe}, \mathrm{Pd}, \mathrm{P}$ ㅇ, 2nd unnamed Ck nr Rex Ck, 5/6.iv. 1997: 2L, 3Pc, $16^{\circ} 34^{\circ} \mathrm{S} 145^{\circ} 20^{\circ} \mathrm{E}$, M t Lewis, Churchill Ck, 6/7.iv.1997: 2P8, 16³5.2'S $145^{\circ} 17.5^{\circ} \mathrm{E}$, Mary Ck, 8.ix.1997; 6Pe, $16^{\circ} 56.2^{\circ} \mathrm{S}$ $145^{\circ} 37.0^{\circ} \mathrm{E}$, Shoteel Ck., 9/10.ix. 1997 (McKie), 3Pe, 17.iv.1999; 2Pc, $16^{\circ} 59^{\prime} \mathrm{S} 145^{\circ} 38^{\prime} \mathrm{E}$, Clohesy R., 7/8.1997 (McKie); Pc, $17^{\circ} 01^{\circ} \mathrm{S} 145^{\circ} 35^{\circ} \mathrm{E}$, nr Mareeba, Davies Ck above falls, 11/12.iv.1997, 2Pe, 19/20.vi.1997, 4Pe, P우, 17/18.xii.1997; $3 \mathrm{Pe}, 17^{\circ} 06.3^{\circ} \mathrm{S} 145^{\circ} 35.9^{\circ} \mathrm{E}$, Danbulla, Kauri Ck, 11.vi.1997; L, Le/P, Pó, Po , $17^{\circ} 06^{\circ} 24^{\prime \prime} \mathrm{S}$ $145^{\circ} 36^{\circ} 52^{\prime \prime} \mathrm{E}$, Mt Haig, ?U. Emerald Ck, 17/18.xii.1997; Pe, $17^{\circ} 16^{\prime} \mathrm{S} 146^{\circ} 55^{\prime} \mathrm{E}$, Junction Ck, 1-4.iv.1997; 5L, 6Pe, Pe/ ${ }^{\circ}, 17^{\circ} 26^{\prime} 48^{\prime \prime} \mathrm{S} 145^{\circ} 28^{\circ} 28^{\prime \prime} \mathrm{E}$, Nigger Ch, 19.xii.1997; $4 \mathrm{Pe}, \mathrm{P}$ ㅇ,17035'S $146^{\circ} 42^{\circ} \mathrm{E}$, Palmerston NP, Learmouth Ck, 8/9.iv.1997, L, $17^{\circ} 37^{\circ} \mathrm{S} 145^{\circ} 45^{\circ} \mathrm{E}$, Palmerston NP, Tchooratippa Ck, 8-9.iv.1997; Pe, $18^{\circ} 11.7^{\prime} \mathrm{S} 145^{\circ} 46.0^{\prime} \mathrm{E}$, Yuccabine Ck, 9.vi. 1997 (McKie); Pe, $18^{\circ} 20^{\circ} \mathrm{S} 146^{\circ} 03^{\prime \prime} \mathrm{E}$, Cardwell, 5-mile Ck, 1-4.iv.1997; $\mathrm{Le} / \mathrm{Pe} / \mathrm{C}, \mathrm{Pe} / 7,18^{\circ} 58^{\prime} \mathrm{S}$ $146^{\circ} 09^{\prime}$ E, Paluma, Birthday Ck, 24.x. 1998 (McKie); Pe, $20^{\circ} 02^{\prime} \mathrm{S} 148^{\circ} 35^{\prime}$. Eugclla NP, Mt Dalrymple trail, ? Cattle Ck, 950m, 22.iii.1998; IL, 6Pe, $20^{\circ} 21^{\prime} 20^{\prime \prime} \mathrm{S} 148^{\circ} 43^{\prime} 15^{\prime \prime} \mathrm{E}$, nr Proserpine, Brandy Ck, 21-23.iii.1998; Pe, $25^{\circ} 03^{\prime} \mathrm{S}$ $153^{\circ} 03^{\circ} \mathrm{E}$, Fraser 1., Boomanjin L., 23/4.ix. 1989 ; Le/Pe/G. $27^{\circ} 06^{\circ} \mathrm{S} 152^{\circ} 27^{\circ}$ E, Atkinson's Dam, 24/5.vitit 1991 (Cook, Cranston \& Hillman); 4L, L(P), $27^{\circ} 45^{\circ} \mathrm{S} 150^{\circ} 14^{\circ} \mathrm{E}$, Tamborine Mt., Sandy Ck, 26.ix.1989. NSW: L, 3Pc, $30^{\circ} 16^{\circ} \mathrm{S} 152^{\circ} 50^{\circ} \mathrm{E}$, nr Dorrigo. Eve Ch, $9 \mathrm{x} .1996 ; \mathrm{Pe}, 3$, $\mathrm{Pe} /$ ㅇ, $\delta^{\circ}, 36^{\circ} 36^{\circ} \mathrm{S} 149^{\circ} 47^{\circ} \mathrm{E}$, Brown Mt, Rutherford Ck, 17.xii. $1990 ; \mathrm{Pe}, 35^{\circ} 23^{\prime} \mathrm{S} 149^{\circ} 55^{\circ} \mathrm{E}$, Monga SF, Mongarlowe R, 2.ii.1991. ACI: Brindabellas, 2Pe. $35^{\circ} 20^{\prime}$ S $148^{\circ} 56^{\circ}$ E, Pierce's Ck, 24.x. 1991 (Drayson); 2L, $35^{\circ} 21^{\prime} \mathrm{S}$ 148 $8^{\circ} 52^{\prime} \mathrm{E}$, Warks Ck, 26.iv. 1988 (Calder): Le/Pe/ס, $35^{\circ} 22^{\circ} \mathrm{S} 148^{\circ} 50^{\circ} \mathrm{E}, \mathrm{Pe}$, Blundell's Ck, 14.i.1988, L, 26.iii.1988, L, 6-9.iv.1988, 2L, 13-16.iv.1988, ठ", i-ii. 1988 (Colless); Le/P ${ }^{\prime}, 2 \mathrm{~L}(\mathrm{P}), 35^{\circ} 22^{\circ} \mathrm{S} 148^{\circ} 51^{\prime} \mathrm{E}$. Condor Ck, 27.x.1991; L, $35^{\circ} 28^{\prime} \mathrm{S} 148^{\circ} 21^{\prime} \mathrm{E}$, Tidbinbilla, Cascade Ck, 3.ii.1989. VIC: Pe, Le/Pe/q, d, $36^{\circ} 48^{\circ} \mathrm{S}$ $146^{\circ} 51^{\circ}$ E, Buckland R., 6.v. 1991 (Cook, Cranston \& Nielsen): L, P ${ }^{\circ}$, $36^{\circ} 54^{\prime} \mathrm{S} 147^{\circ} 27^{\circ} \mathrm{E}$, Omeo Hwy, Omeo R. 26.i.1989; L(P), $36^{\circ} 58^{\circ} \mathrm{S} 147^{\circ} 54^{\circ} \mathrm{E}$, Tambo R., Currawong

Ck., 11.xii. 1990 (Hortle); 8L. 3700 $08^{\prime} \mathrm{S} 147^{\circ} 51^{\prime} \mathrm{E}$, Tambo R., Bindi Ck, $13 . \mathrm{iii} .1989$ (Hortle). TAS: 2L, $41^{\circ} 09{ }^{\circ} \mathrm{S}$ $148^{\circ} 07^{\prime} \mathrm{E}$, NE Tasmania, Peters Link Rd, 24.ii. 1993. WA: Le/P, $34^{\circ} 25^{\circ}$ S $115^{\circ} 47^{\prime}$ E, Carey Brook, 23.xi. 1994.

DESCRIPTION. MALE. $(n=3-4)$ Total length 3.5 mm , wing length 2.5 mm .

Colour. Head pale; antennal pedicel midbrown, plume brownish; clypeus and palps palc. Ground colour of thorax mid-yellow, median and lateral vittae brown especially at anteriorly and laterally, anterior 1/3 of pre-episternum, scutellum and mid-postnotum. Legs pale with brown ring apices of mid and hind lemorae, all tibae, and tarsomerel. Wings unmarked. Abdomen uniformly yellow, hypopygium golden-brown.

Head. AR c. 1.8, terminal flagellomere conical, $3 \times$ as long as broad, penultimate flagellomerc 8 \times terminal flagellomere. Eycs with dorsomedial extension 5 ommatidia until expanding to 6 at mesal end. Temporal setae 16-18, comprised of 4 postorbital continuous with linear verticals. Clypeal setae 15-21. Palp well developed, each segment longer than preceding, 3rd segment with tight cluster of 3-4 sensilla clavata located on mesal surface just distal to mid-length of scgment. Scape bare, pedicel with 6-8 ventral and 2 lateral setale.

Thorax. Scutal tubercle small, distinct. Antepronotal setac 2-4; acrostichals 3t-36, biserial between the vittac, diverging around seutal tubercle and ending in prescutellar field; dorsocentrals 13-22, arising anteriorly in humeral field, uniserial between vittae, becoming irregular in prescutellar field; supraalars 1-2; prealars 8-10; seutellars 16-26. Preepisternum bare.

Wing. Costa bearing uniserial row of some 100 spines of length $8-10$ (Fig. 5A), running for $25-30 \%$ of anterior margin from subapex. Costa extending c. 100 beyond apex of R_{4+5}, ending subapically, directly above $\mathrm{M}_{1+2} ; \mathrm{R}_{2+3}$ strong, running midway between R_{1} and $\mathrm{R}_{4+5} \mathrm{R}_{3}$ strong until abruptly terminating short of costa, closer to apex of R_{1} than R_{4+5}. MCu slightly proximal to FCu, VR 0.86-0.90. Membrane densely setose except in radial cells, unpatterned. Anal lobe rounded. Squamal setae 24-27.

Legs. LR_{1} 0.52-0.56, $\mathrm{LR}_{2} 0.64, \mathrm{LR}_{3} 0.78$; all legs quite strongly setose, with beard ratio on all legs maximally 5 , lacking any tarsal brush on tarsomere 3 of mid legs. Tibial spurs as in Fig. $5 B$, lengths: $P_{1} 25-35, P_{2} 35-45,80-90, P_{3} 35-45$, $90-105$; tibial comb of P_{3} with 6 subequal setae.

FIG. 5. Australopelopia prionoptera Sp . nov., adult and pupa; A , anterior wing margin; B , spurs $\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3} .: \mathrm{C} . \boldsymbol{\delta}^{\text {B }}$ genitalia, left side dorsal; D, right side showing base of gonostyli and volsella; E, of genitalia, right side external, left side part internal; F-I, pupa: F-G, thoraeic horn, F, dorsal, G, lateral; H, apex of anal lobe; I, tergites.

Claws slender, slightly curved, distally pointed, simple. Pulvilli absent.

Hypopygium. Tergite LX with an irregular median patch of 6-8 setae; 'anal point' broad and rounded, densely microtrichiose, perhaps bare apically (Fig. 5C). Gonocoxite $2.5 \times$ as long as broad, cylindrical, densely microtrichiose mediobasally, setose with finer sparser microtrichia distally; with distinct cvidence of volsella, a strongly setose slightly elevated triangular lobe beneath extended anal point (Fig.

5D). Gonostylus well developed, swollen at base, tapering in apical $2 / 3$, terminal spur long. Phallapodeme long, sternapodeme an inverted V-shape (Fig. 5D).
FEMALE. ($\mathrm{n}=3$) As male in colour and nondimorphic features. Total length 2.5 mm , wing length $2.3-2.5 \mathrm{~mm}$. AR $0.17-0.21$, terminal flagellomere $130-175 \mu \mathrm{~m}$ long, terminating in nipple. Eyes with dorsomedial extension 5-6 ommatidia wide. Temporal setae 13-14, lincar uniserial. Clypeal setae 19-24. Palp as male.

FIG. 6. Australopelopia prionoptera sp. nov., larva; A, mentum, submentum, ventral setae and pit; B, dorsal head, seate and dorsal pit; C, antenna; D, antennal segments 2-4; E, antennal apex; F, mandible; G, mola and seta subdentalis; H , ligula; I, maxilla.

Scape with 4 selae, pedicel with 9-13 setae forming semicircle. Antepronotal setae 3-7: acrostichals 32-38; dorsocentrals 24; supraalars 2-3; prealars 7-8; scutellars 20, biserial. LR $0.70_{n} \mathrm{LR}_{2} 0.66, \mathrm{LR}_{3} 0.75$; Tibial spur lengths: P_{l} $40-50, \mathrm{P}_{2} 45-60,60-80, \mathrm{P}, 40,90-95$.

Genitalia (Fig. 5E). Gonocoxapodeme VIII pale, gently curved, mesally broadened. Gonapophysis VIII triangular. Gonotergite IX without setac. Notum well developed, twice length of seminal capsule, free part of rami very pale, Tergite IX thin, not-setose. Postgenital plate large bearing small slightly pediform cerci. Three ovoid to globular seminal capsules, 70-85 long, spermathecal ducts microtrichiose, nearly straight, ending separately. Labia large, densely mictotrichiose.

PUPA. ($\mathrm{n}=10$) Length $4.5-5.3 \mathrm{~mm}$ (tropical), $5.5-7.4 \mathrm{~mm}$ (temperate), pale to golden yellow, apophyses browh, scar pale.

Cephalothorax. Thoracic horn (Fig. 5F) squashed cylindrical, narrower in lateral view (Fig. 5G), terminally tapered to broad point: $2.8-3.2 x$ as long as maximum width, external membrano with spines that may onite into meshwork. Hornsac tubular, occupying about hali' lumen at $1 / 3$ from base, with squat connection to plastron at about $2 / 3$ length from hase. Plastron plate nvoid, occupying about 50% thoracic horn length, with narrow corona. Basal bobe modest tubercle c. $30 \mu \mathrm{~m}$ long. Thoracic comb comprising 8-10 tubercles of length 25-35. Surface of thorax weakly granulate, scutal tubercle and postnotal tubercle absent. Single antepronotal seta retracted from margin, I weak precorneal seta; dorsal setae 1 and 2 present. simple, 2 displaced laterally to close to anterior wing sheath base, des 4 taeniate, in supratar position.

Abdomen (Fig. 5I). Tergite I with sear, lateral muscle marks very weak. Abdominal shagreen fine, aggregated on some segments to form rows, 1. setae taeniate only on segments VII (4, all clustered in posterior half) and segment VIIL (all 5 , more evenly spaced). D setae: 3 on 1, 4 on II, 5 on III-VII, absent on VIII; $\mathrm{D}_{2 \text {-5 }}$ arranged on segments III-VI in linear row. O-setae: 1 pair dorsal, 1 ventral, situated mid-curve of apophyses. Anal lobe (Fig. 5H) about $1.2 \times$ as long as broad, bare, outer borders with spinules, inner border convex, outer border straight. Anal macrosetae at $0.5 \times$ segment length. Gonopodial sheath of female short, of male extendinge c. 65% length of anal lobe.

LARVA. ($\mathrm{n}=10$) Body length $5.4-6.5 \mathrm{~mm}$, head capsutc length 640-890, golden-yellow with cephalic margin darker golden-brown to darker brown: mandible golden, tip brown, ligula golden brown busally, darker in distal hailf, antenor parapond claws lime and pale, posterior elaws broader, simple, golden-yellow. C'apsule longish-oval, cephalic index 0.7-0.75, Cephatic setation: 88 m , V9 and V10 aligned at 45° to antero-ventral axis, VP posterior to V 10 (Fig. 6A), dorsal pit present, S7 close to S8 (Fig. 6B).

Antenna ($6 \mathrm{C}-\mathrm{E}$) half head length, segment lengths: 280-330: 65-70: 6-7:5-6, AR: 3.6-3.7; basal segmente. $15 \times$ as long as basal width. ring organ distal to mid-point (60%); second segment anrulate (Fig. 6D). Blade bifid, broad vuter branch slightly shorter than thin 75-80 inner branch. Lauterborn organs (peg sensilla, Sether, 1980), small (c. 3); style c. 15 extending to apex of antenna.
Mandible (Fig. 6F) gently curved, with rather parallel-sided apical tooth, 130-165 long: long seta subdentalis arises between triangular accessory tooth and well developed, apically directed basal tooth, both protruding beyond imner contour of mandible (Fig. 6(7). Ventrolateral setae closely approximated outer margin, separated from sensillum minuscolum by same distance as posteriormost seta 3 .

Ligula (Fig. 6H) with 5 teeth, row concave. with outer teeth and middle directed anteriorly, point of inner teeth strongly curved outward: ligula strongly constricted medially; area of muscle attachment ovo-rectangular, occupying basal $17-23 \%$, Paraligula bifid, with outer branch near half length of ligula. $2 \times$ length of inner. Pecten hypopharyngis with 15-17 teeth, quite homogenous in size, slightly larger medially than taterally.

Maxillary palp (Fig. 6I) with strong ring organ siluated in mid-segment, with well-developed crown of setae and sensilla including 3 . segmented b-seta with each section subequal in length. Submentum with subapical transverse single band of lighter sclerotisation. Dorsomentum with minute traces of teeth: M appendage rounded-triangular, vesicles not distinguishable. Pseudoradula 8-11 wide, narrowed medially (i.e. slightly broader apically and basally), densely granulose withou cleat aligrment, posteriorly without contact to any sclerotised area of ventral hypopharyngeal apodemes.

Abdsmen. Body without a fringe of swim setac. Anal tubules slender, shorter than halr length of posterior parapod, tapering apically. about $4 \times$ as long as basally wide. Procercus about $3 \times$ as long as wide $(90-100 \times 30-35)$, wath 7 anal setae of length 450-500 Subbasal seta of posterior parapod simple. Posterior parapods with 15-16 simple short and triangular to long and narrow elaws subtended by area of fine spinules on subapical parapod

DISTRIBUTION, ECOLOGY AND BIOGFOGRAPHY. Australopelopia prionoptera is distributed on the easten margin of Australia, from Cape Tribulation to northem Tasmania, predominantly in shaded streans, The single record in the Australian National Insect Collection from Western Australiu is from the extreme southwest of the state from a shaded stream that harbours several other cool stenothermic taxa of gondwanan affinities. The larva, typically for the tribe Pentaneurini, is predatory with a diet that includes chironomid larva little smaller than its own Jength, and includes earlier instars of its own species.

As assessed by a year-long periodic interception of floating pupal exuviae, A. prionoptefa adults, although few in number, emerged onty in a narrow period of mid-summer in a southeastern subalpine stream (Willis, 1998). In contrast to the situation wìh Echinocladius, serendipitous 24 hr drift net collections suggest that this seasonality is artefactual. Final instar larvac can be found throughout winter, exuviae can be collected at almost any time of year, and larvae returned to the laboratory can pupate from within a Jew days to as much as several months later (Cranston pers. obs.; McKie pers. obs.). This phenomenon appears independent of feeding (usually a pupation stimulus to Tanypodinae larvae) or of temperature, and it may be that there is a partial, perhaps facultative diapause in this species.

When this laxon was thought to represent an Australian Pentancura, this species was argued to represent a relictual gondwanan distribution. biat the postulated phylogenetic position as sister group to a broad Thienemannimyia-group undermines the historical speculation. This group is almost world-wide, and its internal phylogenetie relationships are unknown: even some generic delimitation is suspect. Furthermore the Patagonian and New Zealand Tanypodinae are poorly known. However, the historico-ecological explanation of coot stenotherny mentioned
under Echinocladius certandy appears to ispply also to Australopelopia.

CIIIRONOMINAE

Polypedilum Kielfer

Species of Polypedilum are found in virtually all aquatic habitats, and the gemus is one of the largest (most specinse) in the world (Oyewo \& Saether. 1998). The phylogeny is poorly understood, with first efforts by Oyewo \& Sather (1998) and Sether \& Sundal (1999) delimiting some clades, but leaving a morass of paral polyphyla, including some with subgeneric rank, notably Pentapedilum Kieffer. Many Australian taxa have been reared, keyed and illustrated (Cranston, 1996, 2000) but the continental biota is by no means completely understood. Amwngst the fully reared taxa which are not associated with any previously described adult amongst the common species of Polypedilum from certain streams of the Wet Tropics. The species has been subject to experimental maniputation, and is described here to make the name available:

Polypedilum australotropicus sp. nov.
(Figs 7,8)
Potypeditum FNO1, Cransion, 2000.
MATERIAL HOLOTYPE Le/Pe/ ${ }^{\circ}, 18^{\circ} 599^{\circ} \mathrm{S} 146^{\circ} 10^{\circ} \mathrm{E}$, Queensland, Pahma, Birthday Ck, $800 \mathrm{~m}, 1 . x .1998$, reared McKie, in ANIC. Holotype, and paralypes as follows: Queensland: $2 \mathrm{Pe}, 16^{\circ} 28^{\prime} \mathrm{S}$ 145 $19^{\circ} \mathrm{E}$, Mossman, no Rex Ck, 5/6, iv. 1997; 17 ${ }^{\circ} 37^{\prime} \mathrm{S} 145^{\circ} 45^{\circ} \mathrm{E}$, Palmersturi NI. Tchooratippa Ck, 340m., 8-9.iv.1997; Pe, 1747'0 S $145^{\circ} 41^{\prime} 2 \mathrm{E}, \mathrm{Pixies}\left(\mathrm{k}, 2 / 3\right.$,ix. 1997 (McKie); Pe, $18^{\circ} 13^{+}, 1$ S $145^{\circ} 48^{\prime} 5 \mathrm{E}$, Goddard Bridge \#1, 9/10.vi. 1997 (Mckie); $\mathrm{Pc}, 18^{\circ} 20^{\circ} \mathrm{S} 146^{\circ} 03^{\prime \prime} \mathrm{E}$, Cardwell, 5 -mile Ck, 1-4.iv. 1997; Pe, $18^{\circ} 58^{\circ}$.OS $146^{\circ} 09^{\circ} 8 \mathrm{E}$, Camp Ck, 12/13.vi. 1998 (McKie): Pe, $18^{\circ} 58^{\circ} 75146^{\circ} 09^{\prime} 8 \mathrm{E}$, Mary Ck, 9, ix. 1997 (McKju); Le/Pe/q, $18^{\circ} 59^{\circ} \mathrm{S} 146^{\circ} 10^{\circ} \mathrm{E}$, Paluma, Bithday Ck, $800 \mathrm{~mm}, 1 \times 1998$ (McKie); 12Pe, 25-26.iii 1998:

DESCRIPTION, Conforms in all morphology to the generic diagnoses for larva, pupa, and adult males (Wiederholm 1983, 1986, 1989) and females (Sather 1977).

MALF. ($\mathrm{n}=1$) Body length 2.7 mm , pale with mo darkening of vittae. Wing unmarked, length $1.2-1.3 \mathrm{~mm}$. Flagellomeres $1-12,436$. flagellomere 13,375, AR 0.86. Frontai tubercles absent. Head with 9 verticals and postorbitals aligned, 11 clypeals, palp segment lengits $2-5$, $35 ; 55 ; 74 ; 115$. Thorax without antepronotals. with 9 acrostichals, 10 dorsocentrals, 3 prealars. 5 scutellars. Legs pale, unmarked, fore
tarsomeres missing, mid-leg ratio 0.52 , hind leg ratio 0.72 ; foretibial apex with rounded spur (Fig. 7A), mid-leg with narrow inner comb and broad outer comb with spur; hind leg with broad inner comb, narrower outer comb with long spur (Fig. 7B). Wing with R_{2+3} running close to R_{1}, cvanescent; R_{4+5} gently curving, ending proximal to wing apex; setation: $R 18, R_{1} 12, R_{+15} 23$, squama 5: venarum ratio 1.24.
Genitalia (Fig. 7C,D) with tergite IX bands faint, not meeting, 8 median dorsal tergal setae; posterior margin of tergite IX with 6-8 marginal setae. Anal point arising from posterior margin of tergitc IX, hyaline, essentially parallel-sided to rounded apex, 35 long. Inferior volsella cylindrical, with few long setae and one strong apical seta, dorsally without microtrichia, ventrally densely microtrichiose. Superior volsella (Fig. 7D) with microtrichiose base and digitiform extension tapering to point, with outer strong seta at mid-point, where volsella contracts from broader base to digitiform apex. Gonocoxite 112: gonostylus 119, not tapered, apically rounded, without any mesal-directed setae.

FEMALE. ($\mathrm{n}=1$) As for male in colour and non-dimorphic features. Body Icngth 2.0 mm , wing length 1.6 mm . Flagellomercs $1-5,105 ; 70$; $80 ; 55 ; 145$, AR 0.46 . Head with $8-9$ verticals and postorbitals aligned, 10 clypeals. palp segment lengths $2-5,40 ; 70 ; 85 ; 150$. Thorax without antepronotals, with 12 acrostichals, 12 dorsocentrals, 3 prealars, ? scutellars. LR: forc 2.27, mid 0.54 , hind 0.76 . Wing with R_{2+3} evanescent; R_{4+5} curving more strongly than in male, ending at wing apex; sctation: $\mathrm{R} 17, \mathrm{R}_{1} 16$, $\mathrm{R}_{4+5} 31$, squama 5 ; venarum ratio 1.21 .

Genitalia typical for subgenus Polypedilum, with strong, curved gonocoxapodeme VIII, spherical seminal capsules ($40-45 \mu \mathrm{~m}$ diameter), without a neck, with nearly straight spermathecal ducts; with gonapophysis VIII divided into very small ventrolatcral lobe, and larger dorsomesal lobe covered with linearly-aligned microtrichia (Fig. 7E).
PUPA. ($\mathrm{n}=10$) Length $3.2-3.7 \mathrm{~mm}$, pale 10 mid-brown, with apophyses indistinct to brown pigmented.

Cephalothorax. Frontal tubercles absent, frontal seta 56-70. Thorax weakly creased, non-rugose. Thoracic horn (Fig. 7F) hyaline, base simple, small, circular; thoracic horn 3-4branched, with one c. 220 long, weakly spinose branch.

Abdomen. Tergal armament as in Fig. 7G, tergite I antero-laterally with variably prominent antero-lateral projection, without sternal or tergal armament. Hook row comprising $36-51$ hooks, extending $43-46 \%$ of the width of tergite $I I$. Tergites II-VI with anterior transverse band of spines disconnected to any medial spines; 11 with few posterior spines, 111-V1 with sparse medial spine patch and essentially medially-divided posterior transverse band. Conjunctives $1 I I$ and IV with partially aligned multiserial rows of spines. Posterolateral corner of VIII (Fig. 71H) with small 'comb' of 3-4 basally-fused spines. one stronger than the others. Anal lobe bare, withoul dorsal seta, with uniserial fringe of 16-24 taeniae. Pedes spurii A on IV, weak on V, absent on VI. Pedes spurii B well-developed on II, absent on 111. Taeniate lateral setac conventional for genus - 3,3.4.4 (V-VIII).
LARVA. ($n=1-3$) of unknown body length, head capsule length c. 420 , very pale yellow, with teeth of mentum dark brown, apex of mandible and all leeth brown, occipital margin narrow, brown, labral margin golden-brown, premandible pale yellow.

Dorsal surfacc of head (Fig. 8A). Frontoclypeal apotome present, anteriorly broadened, bearing S3 seta subterminally inserted, posterior to $10-12$ wide hyalinc area, perhaps representing the clypeal relic. Antenna (Fig. 8C) with segment lengths, 33-37, 18-20, 9, 11, 6-7, AR 0.8; Lauterborn organs narrow, 10 long; blade length 47-50. Mandible (Fig. 8D): length 105-110, with short outer tooth, two inner teeth. Mola with two spines. Labrum (Fig. 8E); S1 and Sll setae linely plumose, pecten epipharyngis comprises three distinctly separated scales, cach with 3-4 blunt tecth. Mentum (Fig. 8F); width 77-80, with rather bulbous protruding median tceth, small 1st laterals, tall 2nd laterals and remainder decreasing in size to clustered and somewhat projecting 5th and 6th, and small but distinct 7th. Ventromental plate with c. 40 striae, width 70-77, depth 26-30, medially with medially-directed pointed apex.
Abdomen. Anterior parapod claws pale golden, simple, dense. Procercus and apical setae pale-mid brown.
REMARKS. The larva of P. anstralotropicus belongs with a group of Polypedilum species with an uneven mentum, 3rd antennal segment slightly greater than half the length of 4th, ventromental plate width about $2.5 \times$ the depth, and with the median (imer) contour of the plate medially directed, with only two inner

FIG. 7. Polypedilum australotropicus sp. nov. A-D, ઠ; A, anterior tibial apex; B, posterior tibial apex; C, ó genitalia, left side dorsal, right side semi-internal; D, superior volsella. E, \%, gonapophysis VIII: ventrolateral lobe, dorsomesal lobe. F-H, pupa; F, thoracic horn; G, tergites; H, posterolateral corner of VIII.

FIG. 8. Polypedilum australotropicns sp. nov. larva. A, anterior frontoclypeus: B, anterior frontoclypeus Polypedilum 'K3'; C, antenna; D, mandible; E, labrum; F, mentum and ventromental plate.
mandibular teeth and with the postoccipital margin dark. This group includes two taxa that have the median (inncr) contour of the plate anteriorly directed $-P$. oresitrophus and "MI', which are now placed in the subgenus Uresipeditum Oyewo \& Sxther (1998). The two remaining Australian taxa with this combination of features but with the median ventromental plate contour medially-directed are undescribed and are referred to by the codes of ' $\mathrm{K} 3^{\prime}$ and 'alocasia' (Cranston, 1996, 2000). P. seorsum
(Skuse), keyed as having a ventromental plate width: length ratio of 3 (versus 2.5) must be considered since these ratio can be as low as 2.6 and values actually overlap.
The larva of ρ. australotropicus is simitar to that of P. 'alocasia", but the latter appears to differ significantly in ventromental plate features, with the approximately 20 striac having homogeneous width of $5 \mu \mathrm{~m}$ at the anteromedian margin, in contrast to aboul 40 homogencous striac of width $2 \mu \mathrm{~m}$ in P. austrutotropicus. Polypedilum 'K3'
has about 30 heterogeneous striae, with the outermost (laterad) 10 striae about $5 \mu \mathrm{~m}$ wide, but with many narrower striac in the inner (mesal) half of the plate. A novel character that appears to allow separation is found on the dorsal surface of the head where the shape of the anterior frontoclypeal apotome, the breadth of the anterior hyaline band (perhaps representing the clypeus), and the position ofeephalic seta S3 vary between speeies. In P. anstralotropichs and P. 'alucasia' the S3 seta is sited on a dilate anterior frontoclypeus separated from a narrow (10$12 \mu \mathrm{~m}$ wide) hyaline area (Fig. 8A); expansion of the anterior frontoclypeus in 'K3' is weaker and the S3 seta is sited immediately posterior to a broader ($20-25 \mu \mathrm{~m}$) hyaline section (Fig. 8B). In P. seorsmm the hyaline anterior frontoclypeus is reduced to a very narrow strip of $2-4 \mu \mathrm{~m}$ width. The elevation of the 6 th lateral mental tooth with respect to the line of slope of the outer lateral teeth appears greater in P. australotropicus than in the other species, but interpretation of the feature is suseeptible to preparation (orientation and compression) and wear.

The pupa of P. anstralotropicus belongs to a wider group that includes the two larval taxa noted above, defined by having only conjunctives III/IV and IV/V with multiserial spine bands, the anterior transverse spine band being separated from any median spine field, and having the weakly developed comb on the posterolateral eorner of VIII includes a dominant spine and few subsidiary spines. The virtually bare median area of tergite 11 and laek of any armament on tergites VII and VIII differentiates from all speeics except P. (Pentapedilum) convexum which has a different comb comprising several subequal small spines. P. seorsum differs not least in the bare conjunctive 111/IV. All prospective related species differ in having at least 4 lengthy non-spinose branehes to the thoracic horn, unlike that of P. anstralotropicns which has a single dominant, spinose branch, and the others short.

The adult male of P. anstralotropicus has a hypopygium typical of many species of Polypedilum (in the strict sense, but not as represented by the type-species P. mubifer) with a narrow anal point and digitiform superior volsella with the microtrichiose basal section cylindrical, overlying a rounded contour of the gonocoxite with 5-6 strong setae. Similar species, including those with elose resemblance in the immature stages differ as follows:
P. 'K3' has fore-tibial scale tapering to curved
point, longer $(46 \mu \mathrm{~m})$, narrower anal point, narrower cylindrical base and stouter digital part of the superior volsella, and a more tapered gonostylus.
P. 'alocasia' appears identical in hypopygium and foretibial scale structure, but differs in the male wing with R_{4+5} strongly curved and ending at the wing apex, and with denser thoracic setosity.
P. seorsum (Skuse) has a very similar hypopygium, although with a somewhat more evenly tapered digitiform part of the superior volsclla, and weaker basal part, and differs principally in the triangular foretibial scale.
Too few species of Polypedilum are deseribed as females to understand leatures that vary specifically. The small ventrolateral lobe of subgenus Cerobregma (Sxther \& Sundal, 1999) also appears common in Australian members of Polypedilum (s.s.).

In summary, P. anstralotropicus appears to belong in a grouping of species appropriately plaeed in Polypedilum in the most restricted sense (i.e. the Holarctic-dclined P. nubeculosum, group), which includes several species in Australia, and more from southeast Asia (Cranston pers. obs.). In this group virtually all taxonomieally useful features occur in every conceivable permutation, yet with the usually informative male genitalia being very homogenous. Phylogenetic analysis appears a Stygian task beyond the scope of this contribution.
DISTRIBUTION, ECOLOGY AND BIOGEOGRAPHY. P. australotropicns is narrowly restrieted to cool streams at elevations from sea level to 800 m in Far North Queensland's Wet Tropics, from Mossinan to Paluma. Here the larvae can be quite abundant in leaf packs trapped in rilfle-areas (B. McKie pers. comm.). The limited pupal exuvial evidence suggests continuous emergence.

ACKNOWLEDGEMENTS

Brendan McKie is acknowledged for his enthusiastic rearing of many specimens of several taxa during his studies in streams of the Brindabellas and the Wet Tropies, and For undertaking an exuvial survey of difficult-to-reach streams. Professors Nigel Stork and Richard Pearson of Cooperative Research Centre for Tropical Rainforest Eeology and Management (CRC Rainforest) sustaincd studies coneerning the biodiversity of Chironomidae in the Queensland Wet Tropics. 1 thank all relevant authorities for collecting permits. My classically
trained colleague Robert Hoare assisted with nomenclatural matters.

LITERATURE CITED

BOOTHROYD. I.K.G. \& CRANSTON, P.S 1995. Tro Orthocladiinae (Chironomidae) genera common to New Zealiand and Australia: Piraran. gen. and Euhiefferiella Thienemann. P'p 389-408. In Cranston. P.S. (ed.) Chironomids: liom Genes to Ecosystems. (CSIRO, Melbourne).
CRANSTON, I.S. 1996. Identification Guide to the Chironomidae of NSW. AW'T Identifieation Guide Number 1. viii +370 pp. (Australian Water Technologies Pty Ltd: Sydney).
1999. T'wo unusual Chironomini (Diptera: Chironomidae) from Australian rainforest strcams: one new genus and a neotropical genus new for the region. Australian Journal of Entomolugy 38: 291-9.
2000. Electronic Guide to the Chironomidae of Australia. http://www.seience.uts.edu.au/ sasb/chiropage.
CRANSTON, P.S. \& EDWARD, D.II.D. 1999. Borroctadius gen. nov.: a new transantarctie genus of orthocladine midge (Diptera: Chironomidae). Systenatic Entomology 24: 305-33.
FREEMAN, P. 1961. The Chironomidae (Diptera) of Australia. Australian fournal of Loulogy 9: $611-737$.
KOWALYK, H. 1984. The tarval eephalic setae in the Tanypodinate (Diptera: Chironomidac) and their importance in generie determinations. Camadian Entomologist 117: 67-106.
LANGTON, P.II. 1994. If not 'tilaments', then what? Chironomus 6:9.
McKIE, B. \& CRANSTON P.S. 1998. Keystone coleopterans? Colonisation by wood-feeding elmids of experimentally-immersed woods in
south-east Australia. Marine and Freshwater Research 49: 79-88.
MURRAY, D.A. 1995. Cinchapetopiainsolens n.sp., a new species of lanypodinae (Diplera: Chitonomidae) firm Sulawesi. Pp. 417-423. In Cranston, P.S. (ed.) Chironomids: from Genes to Feosysrems. (CSIRO: Melbourne).
OYEWO, E.A. \& S.ETHER. O.A. 1998. Revision of Afrotropical Prolypedilum Kieffer subgen. Uresipedilum Sasa ef Kikuehi. 1995 (Diptera: Chironomidae), with a review of the subgenus. Annales de Limnologie 34; 315-362.
SIETIIFR, O.A. 1977.. Female genitalia in Chironomidae and other Nematocera: morphology, phylogenies, keys. Bulletin of the Fisheries Research Board of Canada 197: 1-2II.
1980. A glossary of chironomid morphology terminology (Diptera: Chironomidae). Entomologica Seandinavica Supplement 14:1-51.
SETHER. O.A. \& SIINDAI , A. 1999. Cerobregna, a new subgenus of Polppeditim Kieffer, with a tentative phylogeny of subgenera and species groups with in Pulypeclihum. Journal of the Kansas Entomological Society 71(3): 315-382.
WIEDERIIOLM. T. 1983. (ed.) Chironomidae of the Holarctic region. Keys and Diagnoses. Part I. Larvae. Entomologica Seandinavica Supplement 19: 1-457.
1986. (ed.) Chironomidac of the Holarctic region. Keys and Diagnoses. Part II. Pupae. Entomologica Seandinavica Supplement 28:1-482.
1489. (ed.) Chironomidac of the Holarctic region. Keys and Diagnoses. Part 11I. Adults. Entomologiea Seandinavica Supplement 34: 1-532.
WILLIS, E. 1998 . Diel and seasonal emeryence patterns of Chironomidae in pristine and montane streams in south eastern Austrilia. Unpubl. honours ilhesis. Australian National University, ACT.

